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We consider the algorithmic problem of selecting a set of target nodes that cause the biggest activation
cascade in a network. In case when the activation process obeys the diminishing return property, a simple
hill-climbing selection mechanism has been shown to achieve a provably good performance. Here we study
models of influence propagation that exhibit critical behavior and where the property of diminishing returns
does not hold. We demonstrate that in such systems the structural properties of networks can play a significant
role. We focus on networks with two loosely coupled communities and show that the double-critical behavior
of activation spreading in such systems has significant implications for the targeting strategies. In particular, we
show that simple strategies that work well for homogenous networks can be overly suboptimal and suggest
simple modification for improving the performance by taking into account the community structure.
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I. INTRODUCTION

Much recent research has focused on understanding how
structural properties of networks affect their dynamical be-
havior �1–4�. For instance, it has been established that criti-
cal behavior of epidemic models on random Erdös-Rényi
graphs are absent in certain scale-free networks �5,6�. This
fact has significant implications for a number of important
applications. In particular, while scale-free networks are gen-
erally robust to random breakdowns, they can be highly vul-
nerable to intentional attacks that target highly connected
nodes �7�. This suggests that immunization strategies for
such networks should take into account the inherent hetero-
geneity in the degree distribution. Indeed, it has been shown
that targeted immunization based on the nodes connectivity
hierarchy can significantly lower the networks vulnerability
to epidemic attacks �8�.

Here we consider a related problem of maximizing influ-
ence propagation in networks by targeting certain influential
nodes that have the potential to influence many others. This
problem has attracted some recent attention due to potential
applications in viral marketing, which is based on the idea of
leveraging existing social structures for word-of-mouth ad-
vertising of products �9–11�. From the algorithmic stand-
point, this selection problem can be stated as follows �9,12�:
given a social network, an influence model, and a set of
nodes S, let ��S� be the expected number of nodes that will
be activated by the end of the influence propagation process.
Then, for a given budget n, the influence maximization prob-
lem is concerned with finding the set S of size n that maxi-
mizes the return ��S�. While this problem is known to be NP
hard for the many influence models, several approximate
methods have been developed. An important result estab-
lished in �12� states that for a class of models for which the
return function is submodular, a simple hill-climbing algo-
rithm, which works by greedily selecting the next best can-

didate node, yields a solution which is guaranteed to be
within �63% of the optimal. Submodularity of the return
function means that ��S� ����−��S����T� ����−��T� for
any node � and any S�T. In other words, the expected
return for targeting a node diminishes with the number of
targeted nodes.

While it is quite safe to assume that the diminishing return
property is satisfied in saturated or near-saturated markets,
those models might fail to capture the dynamics of emerging
markets, where the condition of the submodular growth can
be violated. Indeed, many economical and social phenomena
are better described in terms of critical phase transitions,
where a huge growth is observed only after some threshold
conditions are met. Here we are interested in this latter case.
Our main result is that in such critical systems, the structural
properties of networks can play a significant role in the dy-
namics of the influence propagation. Consequently, selection
strategies that do not account for those structural properties
might produce vastly suboptimal results.

To be more specific, let us focus on the so-called linear
threshold models �LTMs� �13,14� where a node is activated
whenever the fraction of its active neighbors exceeds some
predefined threshold, � j�Ni

wij ��i. Here Ni is the set of ac-
tive neighbors of node i, wij is the normalized weight of the
link between the nodes i and j, � jwij =1, and 0��i�1 is the
activation threshold for the node i. Usually, �i’s are assumed
to be random variables reflecting the uncertainty about indi-
viduals.

Consider the unfolding of the LTM dynamics on the hy-
pothetical influence graphs depicted in Fig. 1. In Fig. 1�a�,
the nodes in the upper row are connected in pairs, and each
link has a weight 1/2. Each node from the bottom �upper�
row affects all the upper �lower� nodes with weight 1 /2K
�1 /N�. Assume fixed thresholds 1/2 for all the nodes. If one
follows the hill-climbing algorithm, then it is easy to see that
only the upper nodes will be selected. Thus, after targeting n
nodes, the number of active nodes is exactly 2n. If n�K,
then this is indeed an optimal solution to influence maximi-
zation problem. However, for n�K this solution is clearly*galstyan@isi.edu
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suboptimal as targeting the bottom K nodes would activate
all the N+K nodes in the network. The suboptimality is even
more dramatic for the network depicted in Fig. 1�b�, which is
obtained from Fig. 1�a� by adding 2K links so that each of
the lower nodes is now influenced by its two proceeding
neighbors with weights 1/4. Assuming a threshold 1/2 for all
the nodes, one observes that the greedy selection policy will
again result in a final active set of size 2n. However, a simple
inspection shows that if one activates two neighboring nodes
from the bottom row, then it will cause a global cascade
among the lower nodes, which will consequently propagate
to the upper nodes and activate them as well. This suggests
that for large N, greedy selection mechanism produces vastly
suboptimal solution.

While the examples above seem peculiar, the main claim
of our paper is that the underlying effect is rather general and
present in more realistic models as well. Indeed, the two
contributing factors to the behavior described above are the

critical nature of the activation dynamics and the structural
heterogeneity of the network. The criticality is manifested by
the fact that there is a threshold number nc so that for n
�nc influence propagation is localized, whereas for n�nc
the activation spreads throughout all �or almost all� the nodes
in the network. And by the structural heterogeneity we mean
different and heterogeneous linkage patterns among the
nodes. A large class of networks that fit this description are
networks with well-defined communities �15,16�. In particu-
lar, here we focus on networks that are composed of a rela-
tively small tight community that is connected with a larger
population of nodes �see Fig. 2�.

II. ACTIVATION DYNAMICS ON BICOMMUNITY
ERDÖS-RÉNYI GRAPHS

We have previously analyzed activation dynamics on net-
works composed of two loosely coupled Erdös-Rényi graphs
�17�. To make this paper self-contained, we below provide
our analysis. Instead of using the traditional linear threshold
model, we focus on a modified version, where the threshold
condition is applied not to the fraction of active neighbors
but to their number. Thus, a node is activated whenever the
number of its active neighbors is greater or equal a pre-
defined threshold, h. The reason for modifying the model is
that the consequent analysis is simple. Furthermore, one can
argue that the modified model might be more plausible from
the social choice standpoint: indeed, it is hard to imagine
that, while making a decision based on the opinion of few
friends, one “weighs” the advice by the overall number of
friends. We stress, however, that our main results are valid
for the fractional threshold model as well, provided that it
possesses critical behavior.

Let us first focus on a single Erdös-Rényi graph with an
average connectivity z. Let Ph denote the fraction of nodes
with threshold h, and let �0 be the budget, i.e., the fraction of
targeted �initially activated� nodes. In this section we con-
sider random uniform targeting so that each node has a prob-
ability �0 to be targeted. Following the same line as in �17� it
can be shown that the fraction of activated nodes at the end
of the cascading process satisfies the following transcenden-
tal equation:

�s = 1 − �1 − �0��
h=0

�

PhQ�h;z�s� , �1�

where Q�n ,x�=�k�ne−xxk /k! is the regularized gamma func-
tion. To understand this expression, note that in the steady
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FIG. 1. Two hypothetical networks illustrating the limitation of
the hill-climbing algorithm. In both networks, each node from the
bottom �upper� row affects all the upper �lower� nodes with weight
1 /2K �1 /N�. In �b�, each of the K nodes in the lower row is influ-
enced by its two preceding neighbors with weights 1/4.
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FIG. 2. Schematic illustration of a bicommunity network.
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state, a node with a threshold h is inactive if it is connected
with less than h active neighbors, and it is not among the
initially targeted set. The former happens with probability
Q�h ;z�s�, while for the latter this probability is �1−�0�,
hence yielding Eq. �1�.

For a fixed connectivity z, the solution of Eq. �1� depends
on the budget �0, as well as on the threshold distribution
function Ph. Let us elaborate on the latter dependence in
more details. First of all, we assume that P0=0, i.e., there are
no nodes that activate spontaneously aside from the initially
targeted nodes. Furthermore, simple inspection shows that
the dynamical properties of the model depend on the fraction
of nodes with threshold h=1, P1. Following �14�, we call
these nodes vulnerable since they will activate whenever one
of their neighbors is active. Clearly, if the fraction of the
vulnerable nodes is sufficiently large, a single node might
trigger a global cascade throughout the network. In particu-
lar, a global cascade will happen whenever the vulnerable
nodes form a giant connected component �14�, which, for the
random Erdös-Rényi graphs translates into P1z=c�1. Be-
low we consider the case when P1 is either zero, or suffi-
ciently small, P1	1 /z, so that for a network of size N, the
number of nodes required to cause a global cascade must be
of order O�N� as N→�.

For the latter case, the analysis of Eq. �1� yields the fol-
lowing observation: for a given connectivity z, there is a
critical fraction �c such that for �0��c the activation process
is localized, while for �0��c activation spreads to all the
nodes in the network. One can obtain the following expres-
sion for the critical density:

�c = 1 − �ze−x0�
h=0

�

Ph+1
x0

h−1

�h − 1�!�−1

, �2�

where x0 satisfies the following equation:

1 −
x0

z
=

�
h=0

�

Ph+1
x0

h−1

�h−1�!

�
h=0

�

�1 − Dh�
x0

h−1

�h−1�!

. �3�

Here Dh=�i
hPi is the cumulative distribution function for
the activation thresholds.

Consider now the activity spreading in two coupled
Erdös-Rényi networks of sizes Na and Nb as depicted in Fig.
2, with connectivities zaa ,zbb within the groups and zab
=zbaNb /Na across the groups. Assume that the cascading pro-
cess in group A is not affected by cross-group links so that
the activation for A nodes is governed by Eq. �1�. For the B
nodes, the activation dynamics is given by a similar equa-
tion, with the only difference that it is affected by the pres-
ence of active A nodes, and the steady-state fraction of active
B nodes satisfies the following equation:

�b
s = 1 − �1 − �b,0��

h=0

�

PhQ�h;zbb�b
s + zba�a

s� , �4�

where �a
s is the steady-state fraction of active A nodes. Thus,

the presence of active A nodes facilitates the activation of B

nodes, and the effect depends on the across the group con-
nectivity zba. Specifically, if zba is very small, then, in order
to achieve a global activation in group B, one needs to target
fraction of B nodes above a certain threshold �b,c. However,
even below the threshold, there is a possibility of a global
cascade in group B if the across the group connectivity zba is
sufficiently large. Indeed, a simple analysis shows �17� that
for a fixed within group connectivity zbb, there is a critical
connectivity zba

c so that for zba�zba
c the activation will propa-

gate from group A to group B and cause a global cascade.

Influence maximization in bicommunity
Erdös-Rényi graphs

The analysis above suggest that discarding the community
structure might result in suboptimal solution to the influence
maximization problem. Indeed, since the critical number of
nodes necessary to cause a cascade for a given connectivity
grows linearly with the network size, it might be more ben-
eficial to target the smaller group first and cause an activation
cascade in that group. Afterwards, the activation will propa-
gate through the larger network, provided that the density of
links between the groups is sufficiently strong. Strictly
speaking, the analysis above applies to the random targeting
strategies. However, one might expect a similar reasoning to
hold for the greedy selection heuristics as well. Indeed, be-
low we validate this hypothesis for synthetic random graphs,
which are similar to those used in the evaluation of commu-
nity finding algorithms �18�. Namely, we assume that the
network is composed of L groups, with NL nodes in each.
Each pair of nodes within and across the same groups are
linked with probability pin and pout, respectively, with corre-
sponding connectivities zin= pinNm and zout= pout�N−NL�. We
assume that one of those L groups constitute the group A,
while the remaining L−1 communities form B.

We tested the greedy selection algorithm for with both
integer and fractional versions of the linear threshold model.
The conventional greedy selection works as follows: starting
from the empty set S=�, the algorithm finds a single node
that causes the largest cascade and adds it to S �if there are
many candidates nodes, then one needs a tie-breaking
mechanism: here we choose the node with the highest con-
nectivity�. This process is then repeated n times. We com-
pared this simple hill-climbing scheme with another one,
which works exactly the same way, but now the candidate
nodes are selected only from the smaller community A. In the
following, we differentiate the latter algorithm by a subscript
A.

In Fig. 3�a� we plot the fraction of activated nodes against
the budget n for the two selection strategies and for the in-
teger threshold model. The connectivities are set to zin=zout
=8, and the thresholds were chosen randomly and uniformly
from the interval �2,5�. One can see that the strategy of
targeting nodes from the smaller community is generally
more efficient, as it achieves a global cascade with a signifi-
cantly lower budget n. More precisely, for small and large
values of n, both methods have a similar performance. How-
ever, there is a window �nA

c ,nB
c �, within which the selection

of A nodes is clearly superior. Recalling the analysis from the
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previous section, it is clear that nA
c corresponds to the critical

threshold for which the activation spreads throughout group
A and then spills into the rest of the network. If one targets
nodes from the general population, on the other hand, this
critical effect does not come into play until later when larger
number of nodes have been selected.

The same picture holds for the fractional-threshold mode
as shown in Fig. 3�b�, where we again compare both algo-
rithms. The fractional thresholds are uniformly distributed on
the interval ��min ,�max�, with �min=0.1, �max=0.5 used here.
Again, we observe that for both small and large values of n,
both methods have a similar performance, while for an inter-
mediate values of n, the strategy that selects A nodes is su-
perior.

III. INFLUENCE MAXIMIZATION
ON SCALE-FREE GRAPHS

Real-world networks have statistical characteristics that
significantly deviate from the Erdös-Rényi model. In particu-
lar, many networks exhibit power-law degree distribution.
Below we examine influence maximization in such net-

works. We show that the suboptimality of the simple greedy
algorithm persists whenever the connectivity variance is lim-
ited so that activation dynamics still demonstrates critical
behavior.

Let us first focus on the activation dynamics in a single
population. Furthermore, for the sake of simplicity, let us
assume that all the nodes have the same activation threshold
H. We consider a network with degree distribution pk=ck−�,
m
k
M, where m and M are lower and upper cutoffs,
respectively, and c is a normalizing constant,

c = �� − 1�
m

1 − �� , � = m/M . �5�

Let �k be the fraction of nodes with connectivity k that are
active at the end of the activation process, and let �0,k be the
fraction of targeted k nodes. Using similar arguments as in
the Erdös-Rényi case, one can show that �k’s satisfy the fol-
lowing equations �k=m ,m+1, . . . ,M�:

�k = 1 − �1 − �0,k��
m=0

H−1

P�m	k� . �6�

Here P�m 	k� is the probability that m out of k edges leaving
from a vertex point to an activated node. Let � be the prob-
ability that a randomly chosen edges leads to an active node.
Then P�m 	k� is a binomial distribution that for large k can be
approximate by the Poisson distribution with a mean �k. Fur-
thermore, for uncorrelated networks considered here, � can
be written as

� =
�k

kpk�k

�k
kpk



1

z
�

k

kpk�k, �7�

where z=�kkpk is the average connectivity. To understand
this expression, note that the probability that a randomly
chosen edge leads to a node with degree k is proportional to
kpk �for uncorrelated networks�, and the probability that this
node will be active is simply �k.

Combining Eqs. �6� and �7� we obtain the following self-
consistent equation for � in the continuous approximation
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FIG. 3. �Color online� Comparison of target-selection strategies
for integer �upper panel� and fractional �lower panel� threshold
models. We used L=10, NL=500, and the total network size is N
=5000. The connectivities were set to zin=zout=8, and the thresh-
olds were chosen randomly �uniformly� from the intervals shown in
the inset.
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FIG. 4. Graphical illustration of the steady-state equation for the
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� = 1 −
c

z
�

m

M

dk�1 − �0,k��
j=0

H−1

e−k� �k�� j+1−�

j!
. �8�

To proceed further, we need to specify the targeting func-
tion �0,k. We considered two cases, random selection �0,k
=�0=const and maximum degree �MD� selection heuristics
�0,k=
�k−m0�, where 
 is the step function, and the cutoff
m0 is found from the budgeting constraint �m0

M pk=�0, which
yields

m0 = m���−1 + �0�1 − ��−1��−1/�−1. �9�

Examination of Eq. �8� for both strategies can be summa-
rized as follows. First of all, it is easy to see that for suffi-
ciently dense networks, �=1 is always a solution. Thus, for
sufficiently large �0 the steady state corresponds to a fully
activated network. Furthermore, for ��3, there is a critical
fraction �c below which another solution appears, as shown
schematically in Fig. 4. In the region 2��
3, the critical
behavior is suppressed if there is no upper connectivity cut-
off, �=0. Namely, for any finite �0, the network is fully
activated at the end of the cascading process for arbitrary
activation threshold H. This is due to the infinite second
moment of the connectivity distribution. The criticality is
recovered, however, if one introduces an upper cutoff. More
details are provided in the Appendix.

Next, we examine the predictions of the above analysis
for the influence maximization problem in networks with
power-law degree distribution. The networks were generated
according to the configuration model �19,20�, with a slight
modification to account for a community structure. Namely,
we assigned each node to one of two communities. Then, if
the generated candidate edge was linking nodes in different
communities that edge was rejected with probability pin.
Thus, pin=0 corresponds with a single-community scale-free
network, while pin=1 corresponds to two completely disjoint
networks. We choose pin such that the network has a well-
defined community structure but at the same time the number
of links across the communities is sufficiently large so that
the cascade can spread from one community to the other.

We examined the impact of community structure on influ-
ence maximization for several targeting strategies and for
varying connectivity cutoff M. For relatively smaller cutoffs
�M �m�, the behavior of the activation spreading should be
similar to the results for the random Erdös-Rényi graphs,
while for larger M it recovers the scale free characteristics.
In Figs. 5�a� and 5�b� we compare the two variants of the
maximum degree heuristics and the greedy strategy, respec-
tively, by plotting the minimum expected budget one needs
to achieve a global cascade in the network. The subscript A
mean that the corresponding heuristics is applied to the
nodes from the community A. In the results presented below
we used communities of size Na=1000, Nb=4000, and pin
=0.8, and the degree distribution is characterized by �=2.5,
and the lower cutoff is m=10. Each point was averaged for
100 random trials. One can see that for small M, the differ-
ence between two targeting strategies are indeed significant,
similar to the results in random Erdös-Rényi graphs. Note
that in absolute terms, the difference for the maximum de-

gree heuristics is significantly larger compared to the greedy
targeting case. This difference however diminishes as one
increases the cutoff. Thus, for networks with very large cut-
offs, targeting nodes from the smaller group does not provide
any improvement. In fact, depending on the actual cutoff
mechanism, one might be better of targeting nodes from the
larger community. For instance, for networks with a power-
law exponent �, the so-called natural connectivity cutoff
scales with the network size as �N1/��−1� �2�: thus, one might
argue that larger community should have a higher cutoff,
which might make it more beneficial to target nodes from
that community.

IV. DISCUSSION

In this paper we examined the problem of maximizing
influence propagation in structured heterogeneous networks.
We demonstrated that for models with critical behavior, the
structural properties of the network, and specifically, its com-
munity structure, can have important implications for the in-
fluence maximization problem. We demonstrated analytically
that for two community networks, targeting nodes from the
smaller community might cause a global cascade with sig-
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FIG. 5. �Color online� Comparison of target-selection strategies
for scale-free network with �=2.5. We used m=10, Na=1000, and
the total network size is N=5000.
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nificantly fewer number of seed nodes. This effect becomes
increasingly important if the sizes of two communities are
vastly different. We also showed through numerical simula-
tions that a similar picture holds for multicommunity net-
works.

In practice, one of course does not have precise estimates
of model parameters, such as activations thresholds, or even
the precise topology of the network. Thus, the problem of
finding the optimal target set for influence maximization
might not be well defined. On the other hand, with the surge
in online networking sites, information about underlying
community structure in such networks is often available. Our
results suggest that in such cases, paying attention to the
community structure of the network might be beneficial for
influence maximization.

We also note that the networks considered here mimic
scenarios where innovations are introduced through a small
community of early adopters. In this respect, our work reso-
nates well with organizational viscosity model of Krackhardt
�21,22� that describes diffusion of ideas in an organization.
Here organization is modeled as a number of interacting sub-
units with closer social ties within each unit. When the orga-
nization has a more or less homogenous structure, then a
newly introduced idea cannot survive unless it is initially
adopted by a large number of individuals. However, if the
network describing the interaction of subunits meets certain
structural conditions, then the idea might take over the whole
population even starting from a small number of initial
adopters.
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APPENDIX

We first focus on the random targeting case. Let us define
�=�−2, �=m /M, and x=m�. Then the steady state �Eq. �8��
corresponds to the zeros of the following function:

g�x� = 1 −
x

m
−

1 − �0

1 − ���x��
x

x/�

dte−t�
j=0

H−1
tj−�−1

j!
. �A1�

A simple inspection shows that x=m is always a solution
�aside from exponentially small corrections�. For ��1 ��
�3�, there is a critical fraction �c below which other solution
appears, as it is schematically shown in Fig. 4. Thus, we
need to show that for ��1, Eq. �A1� has a solution for small
x. Note that derivative of g�x� is given by

g��x� = −
1

m
+

1 − �0

1 − ��

�x�−1

�H − 1�!�x

x/�

dte−ttH−1−�. �A2�

Consider the case �=0 �M→��. Starting at g�x=0�=�0, the
function g�x� is a strictly decreasing over the interval 0�x
�x0, where x0 is determined from g��x0�=0, which yields

�1 − �0�
�x0

�−1

�H − 1�!�x0

�

dte−ttH−1−� =
1

m
. �A3�

There are two separate cases: for H−��0, the integral for
small x0 can be replaced by the gamma function ��H−��,
which yields

x0
�−1 


�H − 1�!
m���H − ��

1

1 − �0
. �A4�

And for H−��0, after integrating by parts and keeping the
leading term we obtain

x0
H 


�� − H��H − 1�!
m�

1

1 − �0
. �A5�

In both cases, x0 remains finite as �0→0. Thus, for suffi-
ciently small x, one has g�x�
�0−cx, where c�0 does not
depend on �0. Consequently, g�x� will intersect zero for suf-
ficiently small �0. More precisely, the critical fraction �0
=�c for which the other solution appears is found from
g�x0�=0.

Now consider the case 0���1 �or 2���3�. Without
connectivity cutoff ��=0� the integral in Eq. �A2� x for small
x does not depend on x and can be approximated by ��H
−��. Thus, the derivative g��x� behaves as g��x��1 /x1−� for
small x. Consequently, there is no other solution except for
the one at x=m. A similar argument holds for �=3, where
g��x� remains finite but positive for small x. The situation
changes as one introduces a finite cutoff M. Indeed, for finite
but small � and �	1, the integral is approximately
�x /��H−� / �H−��. Thus, the derivative is negative over a fi-
nite interval 0�x�x0, where

x0
H−1 
 �H−� �� − H��H − 1�!

m�

1

1 − �0
. �A6�

According to the same argument as above, there is a �0=�c
such that g�x0�=0.

Let us now consider the maximum degree heuristics, for
which we have

g�x� = 1 −
x

m
−

�

1 − ��x��
x

x/�0

dte−tt−�−1�
j=0

H−1
tj

j!
. �A7�

Here �0=m /m0, and the cutoff connectivity m0 is given by
Eq. �9�, which, for �	1, reads

�0 = �0
1/�1+��. �A8�

It is easy to check that

g�x = 0� = �0
� 
 �0

�/�1+��. �A9�

Furthermore, the derivate of g�x� is

g��x� 
 −
1

m
+

�

�H − 1�!
xH−1

H − �
�0

−H+�. �A10�

Consequently, g�x� is negative for 0�x�x0, where
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x0
H−1 
 �0

H−� �� − H��H − 1�!
m�

� �0
�H−��/�1+��. �A11�

Thus, when decreasing �0, the interval where g�x� decreases
shrinks as �0

�1, with �1= H−�
�H−1��1+�� . At the same time, g�x

=0�=�0
�2, with �2=� / �1+��. For ��1 one has �1��2,

which suggests that g�x� will cross the zero at some critical
value �0=�c. And in contrary, for ��1 one has �1��2,
which means that g�x� always remains positive as �0→0,
thus suppressing critical behavior. Finally, repeating the ar-
guments above, one can show that introducing a connectivity
cutoff for �
1 will recover the criticality.
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